If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2+672x-3969=0
a = 48; b = 672; c = -3969;
Δ = b2-4ac
Δ = 6722-4·48·(-3969)
Δ = 1213632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1213632}=\sqrt{28224*43}=\sqrt{28224}*\sqrt{43}=168\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(672)-168\sqrt{43}}{2*48}=\frac{-672-168\sqrt{43}}{96} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(672)+168\sqrt{43}}{2*48}=\frac{-672+168\sqrt{43}}{96} $
| 5(y*y)+3=-8y | | 24+2y=3y | | 5x+7x=3x-4+4x-4 | | 32=3n-25 | | 2x-+3+4x=11 | | u*u-4u+3=0 | | 11x-x=23 | | 115–x=270 | | u*u+2u-3=0 | | 3x+1+2x-4=180 | | u*u+2u-24=0 | | 6+3n-3=24 | | 5a+15=75 | | 88=7r-3 | | 4x+12=40 | | 82=2j+40 | | -5x+8=3x+5 | | 2n+5=6+n | | -4x+8=5x+4 | | 12+6z=54 | | 5+m=-23 | | 3(2x-1)-2(x+1)=5 | | 4k-3=37 | | 10÷s+6=8 | | (5x-2)(2x+3)(x+3)=180 | | 5x+4+7x+4=3x+4x | | 5x+4x=-32 | | 18-4t=6 | | y÷4=21 | | 2x+8=-2x-2 | | x+3/2=x-8 | | 13*10x=0 |